

Stan Wojcicki
NOvA Collaboration Meeting
January 30, 2005

Topics to be Discussed

- Overview of the Analysis Procedure
- Previous Results
- New Geometry
- First Results from Computations
- Light Levels for Different Cell Geometries
- Conclusions

General Analysis Procedure

- 1st step GEANT (by Leon Mualem)
- 2nd step RECO MINOS
 - Track finding and fitting
 - Particle identification using loose criteria
 - Rejection of obvious non-v_e oscillated events
- 3rd step ntuple analysis imposition of cuts
 - Total measured energy within +-25% of nominal
 - No significant energy deposition near boundaries
 - Electron in each view
 - No gap(s) in track near vertex; track starts near vertex
 - No μ or γ in event
- 4th step maximum likelihood analysis of events passing the
 Cutsarabox 2005
 NOvA Collaboration Meeting

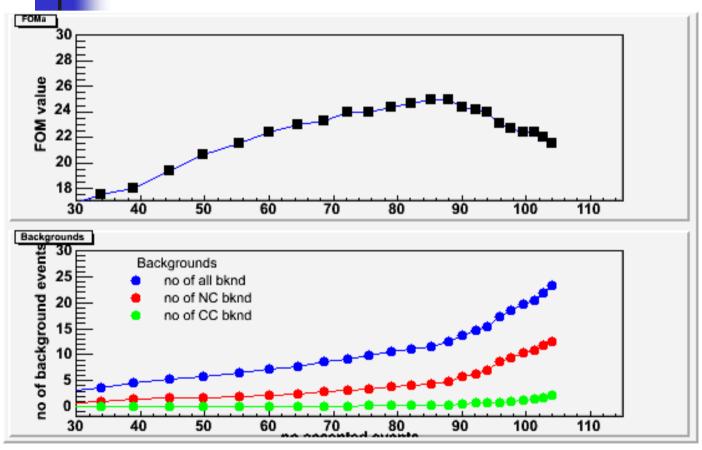
- Total measured energy
- Fraction of total energy contained in electron
- Mean pulse height near the origin of the electron
- Pulse height/plane for electron
- No of hits/plane for electron
- Energy upstream of vertex

- Curvature of electron
- Missing transverse momentum
- Fraction of total electron pulse height in its first half
- Rms deviation of hits on electron wrt fitted curve
- No of tracks identified as hadrons in event

Results of previous analysis (spring 2004)

Number of events processed

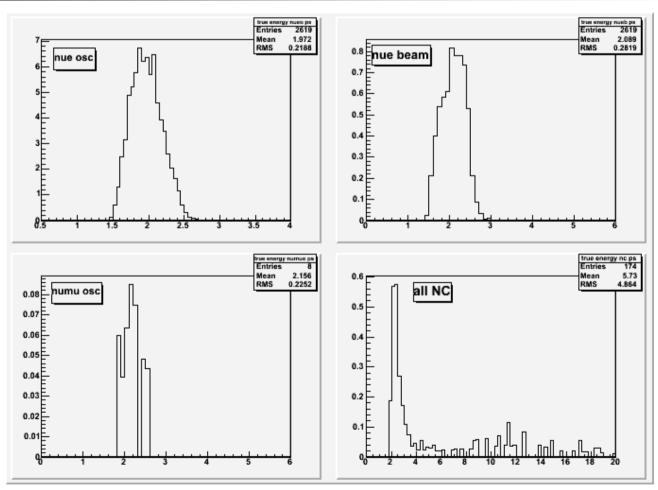
v_e - low energy (0 - 6 GeV) - CC	120K
ν _μ - low energy - NC	~145K
v_{μ} - all energies (0 - 20GeV) - NC	120K
ν _μ - low energy - CC	120K


Results

Event selection	FOM training	FOM test/free bin	FOM test/bin forced
All	24.71 +- 0.54		
Odd/even	24.77 +- 0.77	24.99 +- 0.78	24.34 +- 0.77
Even/odd	24.77 + 0.77	24.30 +- 0.77	23.71 + 0.77
Average			24.02 +- 0.54



Sources of background



 $6.75 v_e$ -beam 4.08 NC $0.26 v_u CC$

True energy of accepted events

More Recent Analysis

- New Geometry (Leon M)
 - Shorter cells (17.5 -> 15.7 m)
 - Thicker wall sizes (by 1 mm)
 - Several different (larger) cell sizes tried
- Minor Changes in Analysis Code
 - Minor bug in fiducial cuts fixed
 - Definition of FOM modified
 - These two changes decrease FOM by about 0.5
- Note: RECO MINOS not reoptimized for new sell dimensions

Initial Results

Cell width	Cell depth FOM		σ_{E}	
3.8 cm	4.5 cm	.5 cm 22.8 10.0		
3.8 cm	6.0 cm	23.2	10.7%	
5.4 cm	4.5 cm	20.6	9.9%	

Light Levels

(using modified UMinn code, R_{asymp}=0.966)

			-			acymp	
Width	Depth	Fiber diameter	Fiber length	Location	N _{pe} -far	Rel N _{pe} per cell	Rel N _{pe} per dE/dx
3.8	4.5	0.8	2 x (15.7+1.0)	Corners	57.3	1.00	1.00
3.8	4.5	8.0	2 x (15.7+1.0)	Center	66.6	1.16	1.16
3.8	6.0	8.0	2 x (15.7+1.0)	Corners	65.2	1.14	0.85
3.8	8.0	8.0	2 x (15.7+1.0)	Corners	74.1	1.29	0.73
5.4	4.5	8.0	2 x (15.7+1.0)	Corners	50.3	0.88	0.88
3.8	4.5	0.8	2 x (17.5+1.0)	Corners	48.1	0.84	0.84
3.8	4.5	0.8	2 x (15.7+1.0)	Corners	41.6	0.73	0.73

Reflectivity decreased by 3% for all wavelengths

- The current analysis appears to give a FOM value of about 23
- There are a number of possible new approaches which might be able to improve the results
- Larger cell widths do not appear promising but going to deeper cells might be advantageous
- I would like to see following avenues investigated:
 - Improved track identification RECO MINOS (cell size dependent)
 - Improved analysis of ntuples
 - "Blind" visual analysis of events in the vicinity of likelihood cut
 - Effect of varying light output